Workshop on Modeling in Automotive Software Engineering (MASE'15)

URL: http://t3-necsis.cs.uwaterloo.ca/mase15

Ottawa, Canada September 27, 2015

Co-located with MODELS'15

Background and Motivation. Automotive software was born less than 40 years ago. The first production automotive microcomputer ECU was a single-function controller used for electronic spark timing in the 1977 General Motors Oldsmobile Toronado. By 1981, GM was using microprocessor-based engine controls executing about 50,000 lines of code across its entire domestic passenger car production. Within just 40 years, the significance, size, and development costs of automotive software has grown to staggering levels: Modern cars can be shipped with as much as 1GB of software encompassing more than 100 million lines of code and experts estimate that more than 80% of automotive innovations now come from computer systems and that the cost of software and electronics can reach 40% of the cost of a car.

A consequence of this development is that the automotive industry is increasingly relying on and becoming a driver of advances in software development and engineering methods, techniques and tools to deal with the many unique challenges the automotive industry faces.

Significant advances have been made dealing with many of these challenges involving, for instance, variability modeling and software product lines, standardization, model-based development, cyber-physical systems, and systems engineering. However, the remaining challenges are compounded by future trends: According to an IBM report¹ released in January 2015, the traditional industry boundaries are starting to disappear and automotive companies must adapt not only to the increasing role of cognitive and adaptive technologies and social media, but also to an increasingly open and collaborative ecosystem of traditional and non-traditional industrial participants (such as car-sharing companies); 80% of the 175 industry executives questioned currently feel ill-prepared for these changes.

Objectives and Topics. Modeling and model-based approaches to software development already have a long tradition in the automotive industry due to, e.g., the high need for abstraction, standardization and interoperability. It is reasonable to believe that advances in modeling will be key to further advancing automotive software engineering as well.

A central objective of the workshop is to provide a forum for practioners and researchers from industry and academia in which novel, innovative, model-based solutions to current and future challenges in automotive software development can be presented and discussed. Another important objective is the identification of new research problems arising from current trends.

MASE'15 encourages submissions presenting novel and insightful descriptions of applications of modeling techniques to problems arising in the context of automotive software engineering. More precisely, topics of interest include, but are not limited to,

- architectures and component-based development and relevant technologies such as AUTOSAR, EAST-ADL, and UML
- real-time systems and support for multi-core, mixed criticality and IP, and dynamic scheduling
- quality assurance and support for different quality attributes such as functional and non-functional correctness, interoperability, fault-tolerance, maintainability, and reusability
- safety and security and support for safety standards such as ISO 26262
- · requirements and traceability
- variability and configuration management
- synthesis, transformation, iterative development, integration, and code generation
- ¹Stanley and Gyimesi. Automotive 2025: Industry without Borders. IBM Institute for Business Value. January 2015

- · deployment
- · development processes and support for globally distributed development
- emerging technologies such as big data, mobile apps, social media, open source software, and vehicle networks

Moreover, we welcome experience reports describing insightful uses of modeling, and position papers on future challenges and open problems in the area.

All submissions are expected argue the relevance of the described work to automotive software engineering clearly and convincingly.

Intended Audience. The intended audience consists of all people interested in MDE and automotive software engineering.

Submissions, Guidelines, and Proceedings. Authors are invited to submit **technical papers** relevant to the workshop topic. Also welcome are insightful **experience reports** describing the use of modeling in an automotive context or **position papers** on future research challenges and open problems.

All submissions must be written in English, adhere to the Springer LNCS formatting guidelines (www.springer.com/computer/lncs?SGWID=0-164-6-793341-0). Both, short papers (not more than 6 pages, including references) and full papers (not more than 10 pages) are welcome. Accepted papers will appear in workshop proceedings published in CEUR (www.ceur-ws.org). Submissions will be handled using EasyChair (www.easychair.org/conferences/?conf=mase2015) and reviewed by at least three PC members.

Important Dates.

July 17, 2015
August 21, 2015
TBD
September 27, 2015
Submission deadline
Author notification
Final version due
Workshop

Program Committee.

Michal Antkiewicz (co-chair)
Joanne Atlee (co-chair)
Robert Baillargeon
Christian Berger
Betty Cheng

University of Waterloo, Canada
University of Waterloo, Canada
CloudOne, USA
Chalmers University, Sweden
Michigan State University, USA

Rance Cleaveland University of Maryland and Reactive Systems Inc, USA

Daniela Damian University of Victoria, Canada Nancy Day University of Waterloo, Canada University of Waterloo, Canada Queen's University, Canada Anders Eriksson Saab. Sweden

Sebastian Fischmeister University of Waterloo, Canada Simon Fuerst BMW, Germany

Holger Giese Hasso-Plattner Institute, Germany
Reinhard von Hanxleden University of Kiel, Germany
Mark Lawford McMaster University, Canada
Jonn Lantz Volvo Cars, Sweden
Rernhard Rumpe RWTH Aachen, Germany
GM USA

Ramesh S (co-chair) GM, USA
Bernhard Schaetz fortiss, Germany
Ina Schaefer Braunschweig Un

Ina Schaefer Braunschweig University of Technology, Germany Alexander Serebrenik Eindhoven University of Technology, The Netherlands

Bran Selic Malina Software, Canada Sebastian Siegl Audi, Germany

Mario Trapp Fraunhofer IESE, Germany

Tawhid bin Waez Ford, USA
Shige Wang GM, USA
Haibo Zeng Virginia Tech, USA
Brenda Zhuang MathWorks, USA